Формула расчета прочности трубы по давлению

При монтаже бытовых трубопроводов расчет не делают, поскольку для этих целей используют стандартные трубы, прочности которых достаточно, дабы выдержать давление воды, газа и пр. А вот строить промышленные магистрали без определенного расчета как правило страшно, поскольку это может привести к стремительному выходу из строя системы и другим неприятным последствиям.

В данной статье мы рассмотрим базы того, как выполняется расчет прочности трубы, и некоторых других параметров, каковые нужно знать, перед тем как выстроить конструкцию.

Формула расчета прочности трубы по давлению

Расчет прочности

Нужно заявить, что расчет прочности трубы нужен не только чтобы магистраль была надежной. Это кроме этого разрешит избежать перерасхода средств, поскольку излишняя прочность приведет к удорожанию строительства. Исходя из этого проектирование есть не меньше серьёзным этапом строительства трубопровода, чем его монтаж.

Итак, этот расчет подразумевает определение нескольких главных параметров:

  • Внутренний диаметр трубы в зависимости от скорости потока транспортируемой жидкости,
  • Внутренний диаметр в зависимости от гидравлического сопротивления,
  • Толщина стенок.

Любой параметр определяется по определенным формулам, с которыми мы ознакомимся ниже.

Формула расчета прочности трубы по давлению

Расчет внутреннего диаметра

Выяснить оптимальный внутренний диаметр трубы при заданной скорости протекания жидкости в ее расходе и трубопроводе возможно своими руками по формуле – D=4Q3600v?y м, где:

  • Q — расход жидкости, измеряется в мг/ч.
  • v — скорость протекания жидкости в трубопроводе, измеряется в м/сек.
  • y — удельный вес жидкости при заданных параметрах, измеряется в кг/м3. Данное значение принимается по справочникам.

Скорость перемещения различных жидкостей и газов определенны расчетами, и обоснованы практическими опытами. Исходя из этого, при расчетах возможно воспользоваться следующими данными:

Для воды и всевозможных маловязких жидкостей (таких как ацетон, спирт, не сильный растворы кислот и щелочей, бензин и пр.) 15 — 30 м/сек
Для газов большого давления и перегретого пара 30-60 м/сек
Для насыщенного пара и сжатого воздуха 20 — 40 м/сек

Из вышеприведенной формулы направляться, что диаметр сечения трубопровода зависит от скорости протекания жидкости. Чем она выше, тем проходное сечение должно быть меньше, соответственно, ниже будут и затраты на постройку конструкции.

Формула расчета прочности трубы по давлению

Гидравлическое сопротивление

При перемещении жидкости либо газа по трубопроводу в обязательном порядке появляется сопротивление в следствии трения транспортируемого продукта о стены трубы и всевозможные преграды в системе. Это сопротивление именуют гидравлическим. Чем выше ее протекания плотность и скорость жидкости, тем больше гидравлическое сопротивление.

Диаметр трубопровода возможно выяснить по заданной утрата напора.

Инструкция по исполнению данного расчета выглядит следующим образом – D=?L?p•y•v2g кгс/см2, где:

  • ?p = P1-Р2 — заданная или допускаемая утрата давления между начальной и конечной точкой трубопровода, измеряется в кгс/см2.
  • L — протяженность магистрали.
  • ? — коэффициент гидравлического сопротивления, может составлять 0,02—0,04.
  • g — ускорение силы тяжести, которое равняется 9,81м/сек.

Само собой разумеется, этот расчет разрешает выяснить утрату давления в прямой трубе. Что касается определения этого фасонных частей и показателя арматуры, то его находят по утрата давления на прямом участке трубы соответствующего диаметра и с эквивалентной длиной.

Эквивалентной длиной именуют прямой участок трубы, гидравлическое сопротивление которого равняется сопротивлению фасонной части при равных других условиях.

Формула расчета прочности трубы по давлению

Толщина стены

Главным параметром трубы, который воздействует на прочность, есть толщина стены.

Данный показатель зависит от нескольких факторов:

  • Внутреннего и наружного давления, оказываемого на трубу,
  • Диаметра трубопровода,
  • Материала, из которого выполнена труба и его коррозионной стойкости.

На большая часть трубопроводов воздействует только внутреннее давление. Внешнему же давлению подвержены вакуумные трубопроводы, и системы с рубахами, предназначенные для обогрева паром легко застывающих либо кристаллизирующихся продуктов.

Толщину стенок металлических труб, на каковые воздействует внутреннее избыточное давление, определяют расчетом на прочность и добавкой толщины, которая отводится на износ от коррозии.

Для этого употребляется следующая формула – S= Sp-C,

  • Sp — расчетная толщина, измеряемая в мм.
  • С — прибавка на коррозию. В большинстве случаев она образовывает 2-5 мм (для среднеагрессивных сред).

Расчетную толщину стены возможно взять по следующей формуле — Sp=pDн230?доп?+P мм, где:

  • p —избыточное внутреннее давление в трубе, кгс/см2.
  • Dн— наружный диаметр трубопровода.
  • ?доп — допустимое напряжение на разрыв, сгс/мм2. Этот показатель возможно выяснить по справочникам, в зависимости от температуры транспортируемой жидкости и марки стали.
  • ? — коэффициент прочности сварного шва. В случае если труба бесшовная, то коэффициент ?=1. Для сварных труб данный показатель может составлять 0,6—0,8, в зависимости от типа вида сварки и сварного шва.

Формула расчета прочности трубы по давлению

Обратите внимание! При монтаже трубопровода, а также в случае его ремонта, нельзя устанавливать отдельные случайные подробности, выполненные из непроверенного либо малоизвестного материала, поскольку это может привести к аварии в системе.

Нужно заявить, что при расчете трубопроводов уделяют внимание не только толщине труб, но и самому материалу. К примеру, в случае если температура, при которой будет эксплуатироваться система, образовывает менее 450 градусов по шкале Цельсия, то применяют трубы, выполненные из стали марки 20.

Формула расчета прочности трубы по давлению

В случае если температура транспортируемого продукта в системе будет высокой, то выбирают сталь 12Х1МФ. Это разрешает применять трубопровод с более узкими стенками. Соответственно, от толщины стенок сильно зависит и цена конструкции.

Устойчивость трубопровода

При расчете магистралей кроме прочности трубопровода ответственным параметром есть его устойчивость в продольном направлении.

Этот расчет делают из условия — S?mNкр, где

  • S — продольное эквивалентное осевое упрочнение в сечении системы.
  • m — коэффициент условий работы системы. Данное значение находится в справочниках.
  • Nкр – критическое продольное упрочнение, при котором трубопровод теряет продольную устойчивость. Данное значение нужно определять в соответствии с существующим правилам строительной механики, с учетом изначального искривления системы, наличия балласта, который закрепляет трубопровод, и черт грунта. На обводненных участках нужно кроме этого учитывать гидростатическое действие воды.

Формула расчета прочности трубы по давлению

Обратите внимание! Продольную устойчивость нужно контролировать для криволинейных участков в плоскости изгиба магистрали. На прямолинейных участках продольную устойчивость подземных участков необходимо контролировать в вертикальной плоскости, радиус начальной кривизны наряду с этим принимается равным 5000 м.

Продольное эквивалентное осевое упрочнение направляться определять в зависимости от воздействий и расчётных нагрузок с учетом поперечных и продольных перемещений магистрали.

Выполняется расчет по следующей формуле —

S=100 [(0,5- ?)?кц+?E?t]F

  • ? — коэффициент линейного расширения материала трубы,
  • E — переменный параметр упругости,
  • ?t — температурный расчетный перепад,
  • ?кц — кольцевые напряжения от внутреннего расчетного давления,
  • F – площадь поперечного сечения трубопроводной магистрали.

Обратите внимание! При определении устойчивости надземных магистралей, нужно произвести расчет анкерных опор, арочных систем, анкерных висячих опор и других элементов конструкции на опрокидывания и возможность сдвига.

Формула расчета прочности трубы по давлению

Классы прочности металлических труб

Дабы по окончании исполнения всех нужных расчетов прочности трубопровода легче было подобрать подходящие трубы, были введены классы прочности труб. В этом случае прочность изделий оценивается сопротивлением металла при растяжении.

Несколько прочности труб обозначается буквой «К» и нормативным значением в кгс/мм2 от 34 до 65. К примеру, газопроводы в районах средней полосы, с учетом средней температуры воздуха около 0 градусов по шкале Цельсия и рабочего давления в системе в 5,4 МПа, делают из труб класса прочности K52.

В условиях Крайнего Севера, где средняя температура образовывает -20 градусов по шкале Цельсия и рабочее давление в системе планируется в 7,4Мпа, делают газопроводы из труб класса прочности К55-К60.

Формула расчета прочности трубы по давлению

Расчет массы трубы

Как правило при расчете системы может потребоваться значение массы труб, например, дабы соотнести его с несущей свойством опор либо затраты на транспортировку.

Формула расчета прочности трубы по давлению

Действительно, для этого нет необходимости вычислять математическим способом, сколько весит конкретный отрезок той либо другой трубы, поскольку справочная информация содержит правильный вес погонного метра самых различных видов труб.

Достаточно только знать следующую данные:

  • Материал трубы,
  • Внешний диаметр,
  • Толщину стенок и пр.

По окончании того как вес одного погонного метра будет известен, это значение нужно умножить на количество погонных метров.

Площадь внешней поверхности

При монтаже различных магистралей может потребоваться их утепление, гидроизоляция, покраска и пр. Для этого нужно выяснить площадь трубопровода, что разрешит посчитать количество материала. Дабы выполнить этот расчет, нужно длину окружности наружного сечения умножить на длину трубы.

Формула определения окружности выглядит следующим образом — L=?D. Длину отрезка трубы обозначим как H.

При таких условиях площадь наружной окружности трубы будет выглядеть следующим образом — St=?DH м2, где:

  • St — площадь поверхности трубы, которая измеряется в метрах квадратных.
  • ? — Число «пи», которое постоянно равняется 3,14,
  • D — внешний диаметр,
  • H — как уже было сообщено выше, обозначает длину трубы в метрах.
Читайте также:  Сальник набивной для трубы 200

К примеру, имеется труба длиной 5 метров и диаметров 30 см. Ее площадь поверхности равняется St=?DH=3,14*0,3*5=4,71 квадратных метров.

На базе приведенных выше формул кроме этого возможно выполнить площадь объема и расчёт трубопровода внутренних его стенок.

Для этого нужно только поменять в расчетах величину внешнего диаметра на величину внутреннего. Все эти параметры смогут потребоваться при монтаже бытового трубопровода.

Вывод

Мы рассмотрели базы того, как выполняется расчет трубопроводов на устойчивость и прочность.

Само собой разумеется, при монтаже промышленных магистралей выполняется значительно более сложное проектирование, которое подразумевает ряд других действий, исходя из этого данную работу делают только специалисты. Но, при устройстве бытовых системы, все нужные значения возможно определить и самостоятельно.

Из видео в данной статье возможно взять дополнительную данные по данной теме.

Загрузка…

Расчеты напряженно-деформированного состояния труб и оболочек от действия гидростатического давления

Skip to content

Проектирование и разработка конструкторской документации. Механическое промышленное оборудование, системы, металлоконструкции.

Комплексные расчеты на прочность. Гидро- и газодинамика. Тепловые расчеты.

При транспортировке и хранении жидких сред, организации технологического процесса, использовании систем гидропривода, теплообмена и во многих других случаях неизбежно возникает необходимость работы технических объектов под действием гидростатического давления.

Комплексный расчет трубопроводов и их элементов на прочность выполняется в соответствии с ГОСТ 32388-2013, расчет сосудов и аппаратов по ГОСТ 34233.1-2017.

Данные нормативные документы регламентируют, кроме всего прочего, номинальные допускаемые напряжения стенок трубопроводов и сосудов под давлением.

Здесь же мы ограничимся онлайн расчетом напряженно-деформированного состояния самых общих задач – трубопровода, толстостенной и составной трубы, а так же тонкостенной осесимметричной оболочки.

Расчет прочности трубопровода

Прочностной расчет трубопровода – наиболее распространенная задача, и здесь, кроме определения напряжений и деформаций по заданной толщине стенки и давлению, рассчитывается толщина стенки трубы с учетом заданной скорости коррозии и допускаемого номинального напряжения. Скорость коррозии в целом зависит от проводимой среды и скорости потока, и рассчитывается по отраслевым стандартам.

В местах приварки плоских фланцев, приварной арматуры и других жестких элементов наблюдается краевой эффект – возникновение изгибных напряжений вследствие ограничения свободного расширения трубопровода под действием давления. В алгоритме реализована возможность учета краевого эффекта при расчете напряжений.

Исходные данные:

  • D – диаметр трубопровода, в миллиметрах;
  • t – толщина стенки трубы, в миллиметрах;
  • P – давление в трубопроводе, в паскалях;
  • E – модуль упругости материала, в паскалях;
  • ν – коэффициент Пуассона;
  • s – скорость коррозии, в миллиметрах / год;

[σ] – допускаемые номинальные напряжения, в мегапаскалях.

РАСЧЕТ ТРУБОПРОВОДА ПОД ДАВЛЕНИЕМ

Эквивалентные напряжения стенки σ, МПа

Радиальные перемещения точек трубы Х, мм

Расчетная толщина стенки tрасч, мм

Формула расчета прочности трубы по давлению

Эквивалентные напряжения:

σ = π×D/2t;

Радиальные перемещения точек трубы:

X = (D / 2E)×(P×D / 2t – (ν×P×D / 4t));

Расчетная толщина стенки:

tрасч = P×D / 2[σ] + T×S.

Выполнен расчет частного случая осесимметричной оболочки – сферы под внутренним давлением.

Исходные данные:

  1. P – давление внутри сферы, в паскалях;
  2. D – диаметр сферы, в миллиметрах;
  3. t – толщина стенки, в миллиметрах;
  4. E – модуль упругости материала, в паскалях;
  5. ν – коэффициент Пуассона.

Эквивалентные напряжения:

σ = P×D/4t;

Радиальные перемещения стенки:

X = (D×σ / 2E)×(1 – ν).

В технике широко применяются такие конструкции, которые с точки зрения расчета на прочность и жесткость могут быть отнесены к тонкостенным осесимметричным оболочкам вращения. В основном это различного рода сосуды под давлением.

Оболочки такого типа рассчитываются по безмоментной теории и в них рассматриваются только нормальные напряжения в меридианальном направлении (вдоль образующей) и в окружном направлении (перпендикулярном меридианальному).

Ниже даны вычисления эквивалентных напряжений в заданной точке осесимметричных оболочек произвольной геометрии.

Исходные данные:

  • P – давление внутри оболочки, в паскалях;
  • r – внутренний радиус оболочки в исследуемой точке поверхности, в миллиметрах;
  • R – меридианальный радиус оболочки в исследуемой точке поверхности, в миллиметрах;
  • Н – расстояние по вертикали (вдоль оси оболочки) от центра радиуса R до исследуемой точки оболочки, в миллиметрах;
  • t – толщина стенки, в миллиметрах;
  • α – угол наклона образующей оболочки к оси (применяется только при прямолинейной образующей, в остальных случаях следует оставить поле пустым), в градусах;
  1. Толщина стенки t, мм
  2. Угол наклона α, град

Эквивалентные напряжения σ, МПа

Формула расчета прочности трубы по давлению

Напряжения в меридианальном направлении:

σm = P×r / 2t×cosβ, где β – угол между касательной к образующей оболочки и ее осью.

Напряжения в окружном направлении:

σt×sinβ / r + σm / R = 1 – уравнение Лапласа.

В случае, если толщина стенки трубы превышает одну десятую среднего радиуса поперечного сечения, то труба считается толстостенной и расчет прочности не допускается проводить по методике расчета тонкостенных труб.

Причиной этому является изменение окружных напряжений по толщине стенки трубы (в тонкостенных трубах оно принято постоянным), а так же то, что в наружных слоях стенки трубы радиальные напряжения сравнимы по значению с окружными напряжениями и их действием пренебрегать уже нельзя.

Ниже рассчитываются напряжения толстостенной трубы в радиальном, окружном и осевом направлении, а так же эквивалентные напряжения по III теории прочности в произвольно взятой точке.

Исходные данные:

  • R1 – внутренний радиус трубы, в миллиметрах;
  • R2 – внешний радиус трубы, в миллиметрах;
  • r – радиус исследуемой точки стенки трубы, в миллиметрах;
  • P1 – внутреннее давление, в паскалях;
  • P2 – внешнее давление, в паскалях;
  • F – нагрузка в осевом направлении, в ньютонах;
  • E – модуль упругости, в паскалях;
  • ν – коэффициент Пуассона.

РАСЧЕТ ТОЛСТОСТЕННОЙ ТРУБЫ ПОД ДАВЛЕНИЕМ

  1. Напряжения в радиальном направлении σr, МПа
  2. Напряжения в окружном направлении σt, МПа
  3. Напряжения в осевом направлении σz, МПа
  4. Эквивалентные напряжения в точке σэкв, МПа
  5. Радиальные перемещения стенки Х, мм

Формула расчета прочности трубы по давлению

Напряжения в радиальном направлении:

σr = ((P1×R12 – P2×R22) / (R22 – R12)) – ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);

Напряжения в окружном направлении:

σt = ((P1×R12 – P2×R22) / (R22 – R12)) + ((P1 – P2)×R12×R22 / (R22 – R12))×(1/r 2);

Напряжения в осевом направлении:

σz = F/(π×(R22 – R12)).

Минимально возможные максимальные напряжения в трубе, нагруженной внутренним давлением не могут быть меньше удвоенного значения давления нагрузки вне зависимости от толщины стенки трубы.

В случае, если номинальные допустимые напряжения лежат ниже этого значения, могут быть применены составные трубы.

В этом случае внешняя труба устанавливается на внутреннюю с натягом, тем самым разгружая ее внутренние слои и сама воспринимает часть приложенной нагрузки.

Ниже выполнен расчет натяга из условий равнопрочности внутренней и внешней трубы, расчет оптимального диаметра сопряжения, обеспечивающего минимальные напряжения, а так же расчет контактного давления между смежными стенками трубы. По результатам данного расчета можно вычислить напряжения в произвольной точке составной трубы, воспользовавшись выше приведенным расчетом толстостенных труб.

Исходные данные:

  • D1 – внутренний диаметр трубы, в миллиметрах;
  • D2 – номинальный смежный диаметр трубы, в миллиметрах;
  • D3 – внешний диаметр трубы, в миллиметрах;
  • Δ – натяг составной трубы, в миллиметрах;
  • P – внутреннее давление в трубе, в паскалях;
  • E – модуль упругости, в паскалях;

Формула расчета прочности трубы по давлению

©ООО”Кайтек”, 2020. Любое использование либо копирование материалов или подборки материалов сайта, может осуществляться лишь с разрешения автора (правообладателя) и только при наличии ссылки на сайт www.caetec.ru

Самостоятельный гидравлический расчет трубопровода

  • Содержание: [Скрыть]

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя.

Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Формула расчета прочности трубы по давлению

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.
Читайте также:  Как заклеить свищ в пвх трубе

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Формула расчета прочности трубы по давлениюУсловный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода.

Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.

Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Формула расчета прочности трубы по давлению

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re

Основы расчета трубопроводов на прочность

Формула расчета прочности трубы по давлениюРасчет трубопровода на прочность

Еще недавно расчет трубы на прочность по аналогии с другими напорными трубопроводами ограничивался расчетом на действие внутреннего давления теплоносителя. Все остальные нагрузки и внешние воздействия учитывались косвенно — путем произвольного повышения коэффициента запаса прочности, т. е. понижения допускаемого напряжения при расчете труб на разрыв.

Это приводило к чрезмерному утолщению стенок труб и, следовательно, к перерасходу металла.

Необходимость в пересмотре и уточнении устаревших методов расчета назрела уже давно, однако и до настоящего времени не разработаны нормативы для расчета прочности теплофикационных труб, аналогичные существующим для труб другого назначения (например, для трубопроводов энергетических установок — котельных и электростанций — или для магистральных трубопроводов для транспорта нефти и газа). Указанное обстоятельство затрудняет проектирование, а в ряде случаев тормозит внедрение прогрессивных технических решений и экономичных конструкций, позволяющих получить экономию трубного металла.

  • В комплекс расчета трубопровода на прочность входят:
  • а) расчет напряжений, вызванных внутренним давлением теплоносителя, и определение толщины стенок труб;
  • б) расчеты на компенсацию температурных удлинений;
  • в) расчет напряжений и усилий в трубах от весовых нагрузок и от сил трения в опорах;
  • в) расчет напряжений от сил трения в грунте при бесканальной прокладке теплопроводов;
  • д) расчет усилий, действующих на неподвижные опоры.
  • Кроме того, при проектировании может встретиться необходимость в дополнительных расчетах, например напряжений, вызванных неравномерным распределением температуры по высоте сечения трубы в пусковом периоде (например, в наружных паропроводах), или напряжений от ветровых нагрузок при надземной прокладке.
  • Трубопроводы, служащие для транспорта тепла при повышенных параметрах (давление пара выше 16 кГ/см2, температура выше 250 0С), должны рассчитываться по «Нормам расчета элементов паровых котлов на прочность».

Для расчета теплофикационных трубопроводов с давлением теплоносителя не выше 16 кГ/см2 и температурой не выше 200—250°С необходимо пользоваться нормами проектирования магистральных трубопроводов (СНиП II-Д.

10-62), которые разработаны на основе метода предельных состояний.

Этот метод используется в настоящее время в расчетах на прочность строительных конструкций как наиболее прогрессивный по сравнению с расчетами, основанными на допускаемых напряжениях.

Указания СНиП II-Д.10-62 распространяются на «холодные» трубопроводы, и в них не учитывается снижение прочности стали под влиянием температуры. Для теплофикационных трубопроводов, большинство из которых нагревается до температуры 150°С лишь в течение небольшого количества часов в году, это снижение также может не учитываться, так как оно не превышает 4—5%.

СНиП II-Д. 10-62 уже давно устарел и заменен на более актуальный.

Для расчета трубы на прочность еще в 1965 году начали применять программу СТАРТ ПРОФ, которая позволяет выполнить не только расчет трубопровода на прочность, но и расчет на прочность сварных соединений, а также расчет на прочность при растяжении и сжатии трубопровода и компенсаторов, будь то сальниковый компенсатор или сильфонный компенсатор.

В 2020 году по числу пользователей программа СТАРТ ПРОФ обогнала своих конкурентов — это программу АСТРА-НОВА и программу CAESAR II. К тому же программой СТАРТ ПРОФ пользуются не только в России, но и по всему миру, как и его конкуренты.

Для Вас мы готовы выполнить расчет трубы на прочность в программе СТАРТ ПРОФ для тепловых сетей. Так что присылайте исходные данные для расчета (план тепловой сети, профиль тепловой сети, узлы и камеры и т.п.) на нашу электронную почту: tesrf77@gmail.com.

Нагрузки, действующие на трубопровод и его напряженное состояние, существенно зависят от способа прокладки.

При прокладке в непроходных подземных каналах и проходных туннелях трубы полностью разгружены от веса грунта, воздействия нагрузок от транспорта и ветровых нагрузок. Трубопровод, уложенный на подвижные опоры (скользящие или катковые), представляет многопролетную неразрезную балку.

Наряду с напряжениями от собственного веса бН трубы испытывают также продольные ба и тангенциальные напряжения от бt внутреннего давления, а также компенсационные напряжения бK.

При неравномерной осадке опор напряжения бН могут сильно возрасти. Как показали многочисленные вскрытия теплопроводов канальной и бесканальной прокладок, неравномерные осадки труб происходят чаще всего по следующим причинам:

а) неодинаковая плотность грунта по длине трассы вследствие его неоднородности. Особенно часто это встречается в условиях городских сетей, прокладываемых на небольшой глубине, где встречаются насыпные грунты, прослойки органического происхождения и т. п.;

б) неправильное ведение земляных работ по разработке траншей, когда в местах излишнего заглубления допускается местная подсыпка рыхлых грунтов.

Напряжения от изгиба в стенках труб могут возрасти и в результате неверной установки опор, если уклон оси труб не проверяется в процессе монтажа.

В связи с этим рекомендуется уменьшать расстояния между опорами в непроходных каналах по сравнению с расстояниями, принятыми для проходных туннелей.

Стоимость опор простейшего (скользящего) типа невелика, и поэтому установка дополнительных опор не вызовет существенного удорожания.

Максимальные напряжения в подземных теплопроводах, уложенных в каналах, чаще всего возникают около неподвижных опор, где действуют максимальные компенсационные усилия и максимальные изгибающие моменты от весовых нагрузок.

При надземной прокладке трубопроводов на мачтах, столбах и эстакадах с пролетным строением, а также на подвесных опорах наибольшие напряжения в трубах вызывают весовые нагрузки. Дополнительной нагрузкой здесь является ветровая.

Вызываемые ею напряжения в трубах малого диаметра приблизительно равны напряжениям от внутреннего давления теплоносителя.

В трубах среднего диаметра они снижаются до половины, а в трубах большого диаметра — до 0,1 напряжения от внутреннего давления.

  1. К дополнительным напряжениям относятся напряжения изгиба, вызванные осадкой подвесных опор труб.
  2. Значительно отличаются от рассмотренных выше условия работы бесканальных теплопроводов.
  3. Различаются две основные конструкции бесканальных теплопроводов: разгруженные и неразгруженные.
Читайте также:  Укладка асфальта зимой: технология, преимущества и недостатки

К первым относятся трубопроводы, проложенные в жестких изоляционных оболочках с небольшим воздушным зазором между трубой и изоляцией (например, в цилиндрических оболочках, собранных из сегментов); ко вторым — трубопроводы, проложенные в оболочках из армопенобетона без воздушных зазоров, и бесканальные прокладки с засыпной изоляцией.

В разгруженных теплопроводах нагрузка от грунта полностью или частично воспринимается жесткой изоляционной оболочкой, и силы трения между неподвижной оболочкой и трубой поэтому имеют относительно небольшую величину. В неразгруженной конструкции силы трения достигают значительно большей величины, так как перемещения труб здесь происходят совместно с пенобетонной оболочкой.

При засыпной изоляции силы трения также велики, так как давление грунта полностью передается на поверхность труб. Определение напряжений в стенках бесканальных теплопроводов осложняется неопределенностью и изменчивостью величины давления грунта на трубы.

Несмотря на большое количество проведенных теоретических и экспериментальных исследований, задача определения давления грунта на трубы (как и на другие подземные сооружения) еще не может считаться окончательно разрешенной. Давление грунта зависит от целого ряда факторов, учесть которые в теоретических расчетах весьма трудно.

Существует большое число формул, предложенных разными, авторами для определения давления на подземные трубопроводы, которые значительно отличаются друг от друга, как в расчетных предпосылках, так и по результатам расчета.

Существенное влияние на прочность бесканальных теплопроводов оказывают неравномерные осадки грунта под трубами. В местах прохода через камеры трубопровод опирается на их стены. Здесь в большинстве случаев создается защемление трубопровода при его изгибе в вертикальной плоскости под действием весовой нагрузки и давления грунта.

Проверка на продольный изгиб при сжатии необходима для прямолинейных участков трубопровода большой длины с сальниковыми (или манжетными) компенсаторами. Под действием осевых усилий сжатия такие трубопроводы могут потерять устойчивость, что не допустимо при установке сальниковых компенсаторов.

Если Вам нужен расчет трубопровода на прочность в программе СТАРТ-ПРОФ, пиши на нашу почту, мы с удовольствием для Вас выполним расчет трубы на прочность.

Расчет и подбор трубопроводов. Оптимальный диаметр трубопровода

Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, в которых осуществляются рабочие процессы, относящиеся к различным областям применения.

При выборе труб и конфигурации трубопровода большое значение имеет стоимость как самих труб, так и трубопроводной арматуры. Конечная стоимость перекачки среды по трубопроводу во многом определяется размерами труб (диаметр и длина).

Расчет этих величин осуществляется с помощью специально разработанных формул, специфичных для определенных видов эксплуатации.

Труба – это полый цилиндр из металла, дерева или другого материала, применяемый для транспортировки жидких, газообразных и сыпучих сред. В качестве перемещаемой среды может выступать вода, природный газ, пар, нефтепродукты и т.д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая бытовым применением.

Для изготовления труб могут использоваться самые разные материалы, такие как сталь, чугун, медь, цемент, пластик, такой как АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутелен, полиэтилен и пр.

Основными размерными показателями трубы являются ее диаметр (наружный, внутренний и т.д.) и толщина стенки, которые измеряются в миллиметрах или дюймах.

Также используется такая величина как условный диаметр или условный проход – номинальная величина внутреннего диаметра трубы, также измеряемая в миллиметрах (обозначается Ду) или дюймах (обозначается DN).

Величины условных диаметров стандартизированы и являются основным критерием при подборе труб и соединительной арматуры.

Соответствие значений условного прохода в мм и дюймах:

Трубе с круглым поперечным сечением отдают предпочтение перед другими геометрическими сечениями по ряду причин:

  • Круг обладает минимальным соотношением периметра к площади, а применимо к трубе это означает, что при равной пропускной способности расход материала у труб круглой формы будет минимальным в сравнении с трубами другой формы. Отсюда же следует и минимально возможные затраты на изоляцию и защитное покрытие;
  • Круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды с гидродинамической точки зрения. Также за счет минимально возможной внутренней площади трубы на единицу ее длины достигается минимизация трения между перемещаемой средой и трубой.
  • Круглая форма наиболее устойчива к воздействию внутренних и внешних давлений;
  • Процесс изготовления труб круглой формы достаточно прост и легкоосуществим.

Трубы могут сильно отличаться по диаметру и конфигурации в зависимости от назначения и области применения. Так магистральные трубопроводы для перемещения воды или нефтепродуктов способны достигать почти полуметра в диаметре при достаточно простой конфигурации, а нагревательные змеевики, также представляющие собой трубу, при малом диаметре имеют сложную форму с множеством поворотов.

Невозможно представить какую-либо отрасль промышленности без сети трубопроводов. Расчет любой такой сети включает подбор материала труб, составление спецификации, где перечислены данные о толщине, размере труб, маршруте и т.д.

Сырье, промежуточный продукт и/или готовый продукт проходят производственные стадии, перемещаясь между различными аппаратами и установками, которые соединяются при помощи трубопроводов и фитингов.

Правильный расчет, подбор и монтаж системы трубопроводов необходим для надежного осуществления всего процесса, обеспечения безопасной перекачки сред, а также для герметизации системы и недопущения утечек перекачиваемого вещества в атмосферу.

Не существует единой формулы и правил, которые могли бы быть использованы для подбора трубопровода для любого возможного применения и рабочей среды.

В каждой отдельной области применения трубопроводов присутствует ряд факторов, требующих учета и способных оказать значительное влияние на предъявляемые к трубопроводу требования.

Так, например, при работе со шламом, трубопровод большого размера не только увеличит стоимость установки, но также создаст рабочие трудности.

Обычно трубы подбирают после оптимизации расходов на материал и эксплуатационных расходов. Чем больше диаметр трубопровода, то есть выше изначальное инвестирование, тем ниже будет перепад давления и соответственно меньше эксплуатационные расходы.

И наоборот, малые размеры трубопровода позволят уменьшить первичные затраты на сами трубы и трубную арматуру, но возрастание скорости повлечет за собой увеличение потерь, что приведет к необходимости затрачивать дополнительную энергию на перекачку среды.

Нормы по скорости, фиксированные для различных областей применения, базируются на оптимальных расчетных условиях. Размер трубопроводов рассчитывают, используя эти нормы с учетом областей применения.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования.

Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности.

Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды.

В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб.

Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Основные положения для расчета потока в трубопроводе

Характер течения среды в трубопроводе и при обтекании препятствий способен сильно отличаться от жидкости к жидкости. Одним из важных показателей является вязкость среды, характеризуемая таким параметром как коэффициент вязкости.

Ирландский инженер-физик Осборн Рейнольдс провел серию опытов в 1880г, по результатам которых ему удалось вывести безразмерную величину, характеризующую характер потока вязкой жидкости, названную критерием Рейнольдса и обозначаемую Re.

  • Re = (v·L·ρ)/μ
  • где: ρ — плотность жидкости; v — скорость потока; L — характерная длина элемента потока;
  • μ – динамический коэффициент вязкости.

То есть критерий Рейнольдса характеризует отношение сил инерции к силам вязкого трения в потоке жидкости. Изменение значения этого критерия отображает изменение соотношения этих типов сил, что, в свою очередь, влияет на характер потока жидкости. В связи с этим принято выделять три режима потока в зависимости от значения критерия Рейнольдса. При Re

Ссылка на основную публикацию
Adblock
detector