Моментом силы называют вращательное усилие создаваемое вектором силы относительно другого объекта (оси, точки).
- Размерность — [Н∙м] (Ньютон на метр) либо кратные значения [кН∙м]
- Аналогом момента силы является момент пары сил.
- Обязательным условием возникновения момента является то, что точка, относительно которой создается момент не должна лежать на линии действия силы.
Определение
- Момент определяется как произведение силы F на плечо h:
- Плечо силы h, определяется как кратчайшее расстояние от точки до линии действия силы.
- Наш короткий видеоурок про момент силы с примерами:
- Например, сила величиной 7 кН приложенная на расстоянии 35см от рассматриваемой точки дает момент M=7×0,35=2,45 кНм.
Пример момента силы
- Наиболее наглядным примером момента силы может служить поворачивание гайки гаечным ключом.
- Гайки заворачиваются вращением, для этого к ним прикладывается момент, но сам момент возникает при воздействии нашей силы на гаечный ключ.
- Вы конечно интуитивно понимаете — для того чтобы посильнее закрутить гайку надо взяться за ключ как можно дальше от нее.
В этом случае, прикладывая ту же силу, мы получаем большую величину момента за счет увеличения её плеча (H3>h1).
Плечом при этом служит расстояние от центра гайки до точки приложения силы.
Плечо момента силы
Рассмотрим порядок определения плеча h момента:
Пусть заданы точка A и некоторая произвольная сила F, линия действия которой не проходит через эту точку. Требуется определить момент силы.
Покажем линию действия силы F (штриховая линия)
Проведем из точки A перпендикуляр h к линии действия силы
- Длина отрезка h есть плечо момента силы F относительно точки A.
- Момент принимается положительным, если его вращение происходит против хода часовой стрелки (как на рисунке).
- Так принято для того, чтобы совпадали знаки момента и создаваемого им углового перемещения.
Примеры расчета момента силы
Сила расположена перпендикулярно оси стержня
Расстояние между точками A и B — 3 метра.
Момент силы относительно точки A:
Сила расположена под углом к оси стержня
Момент силы относительно точки B:
MB=F×cos300×AB=F×cos300×3м
Известно расстояние от точки до линии действия силы
Момент силы относительно точки B:
См. также:
- Момент силы относительно точки
- Момент силы относительно оси
Выполнение расчетов высоты дымовой трубы: формулы и примеры
Печь или камин неспроста называют «сердцем дома». Но приручение огня внутри жилой постройки предполагает целый ряд действий и длинный свод правил.
Ведь любые ошибки в проектировании дымохода обходятся слишком дорого, начиная с удушливого дыма внутри помещения и заканчивая пожаром.
И чаще всего все начинается с нарушения тяги и разрушения стенок дымохода, а затем возгораются прилегающие строительные конструкции.
Сегодня выполнение расчетов высоты дымовой трубы зачастую производят через специальные программы, хотя опытные специалисты обязательно проверяют полученные значения вручную, при помощи формул, с которыми есть смыл познакомиться ради душевного спокойствия.
Они не сложны, для их понимания достаточно школьных знаний геометрии и умения подставлять значения в нужное место. А мы, в свою очередь, постараемся объяснить вам, почему так важен каждый показатель для определения высоты дымоходной трубы, и как именно он на нее влияет.
Расположение дымохода и направление ветра: как не допустить завихрений
Согласно всем строительным нормам и правилам, дымоход должен возвышаться над кровлей на определенном расстоянии. Это необходимо для того, чтобы воздуха на выступающих частях крыши ввиду завихрений не вызывал обратную тягу.
Обратную тягу воочию можно встретить в виде дыма, который валит из камина прямо вовнутрь помещения. Но и лишняя высота дымохода тоже не нужна, иначе тяга станет слишком сильной и тепла от такого камина не дождаться: дрова будут испепеляться, как спичка, не успевая давать жар.
Вот почему так важно рассчитать высоту дымоходной трубы максимально точно, в особенности учитывая направление действующих на местности ветров:
Если труба оказалась расположенной слишком близко к густым деревьям или высокой стене, ее необходимо нарастить асбестоцементной или стальной трубой.
В этом видео вы также найдете ценные советы по устройству дымохода и решения проблем с его высотой:
Сила тяги: как добиться идеального сгорания топлива
На саму силу тяги оказывают воздействие сразу несколько важных факторов:
- материал изготовления дымохода;
- высота фундамента над уровнем моря;
- температура дымовых газов на выходе из печи;
- форма поперечного сечения дымоходной трубы;
- гладкость или шероховатость внутренней поверхности;
- нарушение внутренней герметичности дымохода;
- температура и влажность наружного воздуха;
- вентиляция помещения с котлом или печью;
- полнота сгорания топлива;
- степень загрязнения котла (или печи) и дымохода;
- тип используемой горелки (модуляционная она или дискретная).
Первым делом вам нужно определить величину статической тяги дымохода, а измеряется в величине ∆p [Па]. Вот формула для расчета:
h[м]=(∆p·Tp·Tн)/(3459·(Tp-1,1·Tн))
Тр – это средняя температура в трубе, а Тн – наружная температура. Измеряют ее по умолчанию в градусах по шкале Кельвина, но можно указать и по Цельсию, добавив +273.
Вычислить среднюю температуру не сложно. Обычно ее сообщают в технических данных к котлу, но важно также учитывать охлаждение. Это 1 градус на каждый метр кирпичной трубы, 2 градуса на метр стальной изолированной и 5 градусов на неизолированной.
При этом значение наружной температуры желательно брать то, что характерно для лета как самого проблемного времени для тяги:
Сделайте аэродинамический расчет и узнаете точную необходимую высоту и диаметр дымовой трубы. Сама по себе величина тяги означает разницу плотностей воздуха и дымового газа, умноженные на высоту дома. Именно 5 метров дымохода обеспечивают разрежение и тягу для дыма.
Но что делать, если высоту трубы уже выше ставить нельзя, а тяга по определенным причинам еще недостаточна? Такое нередко бывает, когда дымовые газы остывают слишком быстро, особенно в холодное время года. Тогда для восстановления тяги нужный участок трубы просто утепляют.
Также помните, что реальная тяга всегда меньше статической из-за сопротивления движения газов внутри стенок трубы. Чем уже проходное сечение дымохода, и чем больше в нем изгибов, горизонтальных участков и тому подобное – тем хуже будет тяга, ведь на тягу влияет потеря давления по всей длине трубы.
Еще одна проблема, связанная с высотой дымохода, заключается в холодном воздухе из камина. Так, когда он не работает, из него выпускают холодный воздух с улицы. Происходит это тогда, когда оголовок дымохода находится ниже окончания вентиляционной вытяжки, или когда мансарда слишком большая и плохо утеплена.
Проектирование дымохода в зависимости от конфигурации отопления
Идем дальше. Какие дымоходы сегодня устанавливают чаще всего? Это кирпичные, керамические и из изолированной и неизолированной стали.
И в первую очередь, при проектировании дымохода, вычисляют его его минимальные показатели пропускной способности. Если здесь допустить ошибки, дымовые газы станут скапливаться внутри трубы и доставлять немало проблем.
Общая схема расположения дымохода выглядит так:
Если температура отходящих газов невысока, как у современных низкотемпературных котлов, тогда в верхней части дымохода устанавливают так называемые электрические дымососы.
Они представляют собой небольшой вентилятор с лопастями. Такое устройство принудительно убирает продукты сгорания из трубы, усиливая, тем самым, силу тяги. И тогда сила тяги уже не влияет напрямую на высоту дымохода, ведь ее добиваются другим способом, а не «ловлей ветра».
Если дополнительного приспособления нет, тогда ветер ловить все-таки придется. И в этом случае нужно отталкиваться от имеющейся мощности котла, печи или камина, которые можно узнать из технической документации. Она выражается в том количестве топлива, которое сжигают за один час работы.
Если количество объема топлива известно, тогда объем газов рассчитывают по такой формуле:
Vг = B∙V∙(1+t/273)/3600
Результат получится в м3/с. Это – скорость движения газов в трубе. Сечение трубы вычисляем уже по такой формуле:
- F = π∙d²/4
- И полученное значение определяют в м2. Это – площадь сечения дымохода, а диаметр рассчитывают по формуле:
- dт = √4∙B∙V∙(1+t/273)/π∙ω∙3600
Остальные характеристики почти одинаковы у большинства отопительных приборов. Так, скорость выхода газов в дымоходе обычно не меньше, чем 2 метра в секунду, а температура газов на входе в трубы – от 150 до 200 градусов.
Также стандартный напор газов на 1 метр – не менее, чем 0,4 мм Н2О, или 4 Па:
Поэтому, согласно СНиП, высота дымовой трубы от колосника должна составлять не менее 5 метров.
Воспламеняемость кровли: когда искра приводит к беде
Имеет значение также сам кровельный материал, а именно – его горючесть. Так, при пожаробезопасном покрытии высоту трубы следует увеличить на 1-1,5 метра, чтобы искры не долетали до кровли:
Зависимость высоты дымохода от других элементов кровли
Большое значение также имеет то, насколько близко сам дымоход расположен к коньку кровли, парапету или других его элементов:
Итак, что касается возвышения дымовых труб над крышей, существуют такие правила:
- Не меньше, чем 1,2 метра над плоской кровлей.
- Не меньше, чем 50 см над коньком кровли, если труба расположена до 1,5 метра от конька.
- Не ниже уровня конька, если труба расположена от 1,5 до 3 м от конька.
- Не ниже линии, которую можно провести от конька вниз к горизонту под углом 10 градусов, если труба расположена от конька более 3 метров.
При этом дымовой канал должен находиться от других элементов строения на определенном расстоянии, минимум:
- 150 мм для труб с изоляцией;
- 500 мм для труб без изоляции.
Минимальная разрешенная высота трубы – 50 см. Но это слишком низкие трубы, которые разрешено ставить только на плоских крышах без каких-либо выступов. Если же крыша с более сложной конфигурацией, придется повозиться и учесть все выступающие части.
Так, если все эти части находится на расстоянии от 1,5 метров от самой трубы, тогда трубе достаточно быть просто выше, чем все эти элементы. Если они ближе, чем 1,5 метров, тогда дымоход должен превышать их высоту минимум на 59 см:
Расположение выхода дымохода из дома
Существуют также свои правила монтажа дымохода через крышу и стену. Вот пример монтажа трубы прямо через кровлю:
Выдержать высоту дымохода в 5 метров от колосника топки до верхнего среза трубы не сложно, если был построен одно- или двухэтажный дом. Но проблемы возникают, если камин был установлен на верхнем мансардном этаже – здесь недостаточна высота потолка и чердака.
Немного по-другому происходит монтаж дымохода через стену дома или бани:
Отметим, что печи к дымоходам следует присоединять при помощи дымоходных труб длиной не более 0,4 м.
Вопросы экологии для промышленных зданий
Одним словом, пропускная способность дымоходной трубы должна обеспечить беспрепятственное прохождение дыма и его выход в атмосферу. Причем здесь немаловажен и экологический момент, а именно, правильно ли продукты сгорания топлива рассеиваются в атмосфере.
Так, при строительстве коммерческих и заводских предприятий учитывают определенные санитарные нормы. А они зависят от погодных условий местности, типичной скорости потока масс воздуха, рельефа ландшафта и многих других факторов.
Итак, какое значение получилось у вас и равно ли оно точно 5 метрам?
Расчет нагрузки на профильную трубу – онлайн калькулятор и таблицы расчетов
Выбирая профильный прокат, клиент должен осознать, что точные вычисления возможных нагрузок, в зависимости от линейных и иных параметров стояков – очень важны. Любая создаваемая конструкция рассчитана на конкретный вес.
- Категорически запрещается размещать на ней соединения, предметы, масса которых, с учетом воздействия погодных факторов, будет больше допустимой.
- Чтобы знать, для чего нужен расчет нагрузки на профильную трубу, посмотрим, где она используется.
- Стояки с профильным сечением нашли свое применение в различных сферах жизнедеятельности человека.
- С их помощью:
- монтируются навесы на балконах, верандах, возле частных домов;
- собираются лестницы, подиумы, сцены.
Этот список можно продолжать, но главное, что нужно запомнить:
чтобы конструкции были безопасными, надежными, служили долго необходимо провести расчет вертикальной нагрузки на профильную трубу. Если этого не сделать, то система может не выдержать веса, что приведет к нежелательным последствиям.
Популярность профильных труб объясняется низкой стоимостью, небольшой массой, высокой прочностью при изгибе. Выбирая прокат с прямоугольным или квадратным сечением, большинство заказчиков понимают важность расчета нагрузки на профильную трубу. Учитывается соответствие линейных размеров профилей к возможной силе механического воздействия на деталь.
Что будет, если не учесть возможного воздействия тяжести на конструкцию? О таком думать даже нельзя, поскольку при воздействии максимально допустимого веса возможны 2 варианта:
- безвозвратный изгиб трубы, поскольку она потеряет свою упругость;
- разрушение целой конструкции, что чревато негативными последствиями.
Не всегда требуется расчет
Если вы решили использовать профильную трубу для сооружения калитки, ограждения, перил, то расчет на изгиб проводить не обязательно, поскольку нагрузка на такие системы – минимальная.
Для точности и быстроты расчета нагрузки на профильную трубу можно воспользоваться калькулятором или программой SketchUP. (Скачать торрентом — Официальная русская версия! Разрядность: 64bit, Язык интерфейса: Русский, Таблетка: Присутствует)
Расчет будет правильным при соблюдении таких 3-ех условий:
- Если в системе будут опоры и верхняя рама, в которых будут возникать механические (не электрические!) напряжения, то усилия будут распределяться между несколькими стояками, в зависимости от их соединения между собой.
- Достаточно большая высота системы способна уменьшить несущую способность отдельных опор. Связано это с появлением крутящего момента в стояках.
- Чтобы получить надежную металлоконструкцию большой высоты, нужно добавить дополнительные опоры. Благодаря ребрам жесткости, которыми будут связаны между собой стояки, механическое напряжение сможет распределиться более равномерно.
Выполняя непосредственные вычисления, необходимо владеть информацией о:
1. Типах возможных нагрузок.
Они могут быть:
- стабильными, при которых учитывается вес деталей конструкции, масса грунта, давление кровли и т.п.;
- долговременными, которые будут действовать на протяжении большого периода, но могут измениться в любой момент: масса котла, лестничного марша, стен из кирпича;
- кратковременными, действующие на протяжении малого промежутка (атмосферные осадки, масса посетителей, транспортных средств);
- особыми, что вызываются непредвиденными обстоятельствами: ливнями, землетрясениями, извержениями вулканов, взрывами и пр…
2. Размерах профильных труб, формы сечений.
3. Суммарном напряжении строения.
4. Прочностных характеристиках стали.
Для расчета нагрузки на профильную трубу пользуются:
- таблицами;
- математическими формулами;
- специальным онлайн калькулятором.
Применяем таблицы
При применении первого метода нужно сопоставление физических характеристик трубы, которая будет применяться для сооружения системы, с табличными данными. Для этого берут значения величин из таблиц 1 или 2, в зависимости от типа профиля.
Таблица 1. Нагрузки для стояков квадратного сечения
Сечение, мм |
Максимально возможная масса, кг | |||
Длина пролета, м | ||||
1 | 2 | 4 | 6 | |
40х40х2 | 709 | 173 | 35 | 5 |
50х50х2 | 1165 | 286 | 61 | 14 |
60х60х3 | 2393 | 589 | 129 | 35 |
80х80х3 | 4492 | 1110 | 252 | 82 |
100х100х4 | 9217 | 2283 | 529 | 185 |
140х140х4 | 19062 | 4736 | 1125 | 429 |
Таблица 2. Нагрузки для стояков прямоугольного сечения
(для вычислений используют длинную сторону)
Сечение, мм |
Максимально возможная масса, кг | |||
Длина пролета, м | ||||
1 | 3 | 4 | 6 | |
50х25х2 | 684 | 69 | 34 | 6 |
60х40х3 | 1255 | 130 | 66 | 17 |
80х40х3 | 2672 | 281 | 146 | 43 |
80х60х3 | 3583 | 380 | 199 | 62 |
100х50х4 | 5489 | 585 | 309 | 101 |
120х80х3 | 7854 | 846 | 455 | 164 |
Эти таблицы имеют данные о максимально допустимых массах. При таком воздействии на профиль труба не разрушится, а лишь согнется.
Но стоит увеличить массу хотя бы на 0,5 кг, система может полностью деформироваться, что приведет к разрушению.
В связи с этим, на практике выбирается деталь прямоугольного или квадратного сечения, запас прочности которой был бы большим от минимального хотя бы в 2 раза.
Преимущества табличного метода
Табличный метод отличается высокой точностью. Для его применения нужно обладать информацией о видах опор, способах фиксации на них профилей, типах нагрузок.
Кроме этого, для полных расчетов нагрузок необходимо иметь данные о:
- моментах инерции профильной прямоугольной или квадратной трубы, значение которых можно взять из таблиц, начиная от сечений 15х15х1 5 и оканчивая 100х100х4 и выше;
- длине пролетов;
- величине тяжести на каждый стояк;
- коэффициентах модулей упругости (взять из СНиП).
Масса 1 м.п. профиля 15х15х1,5 составляет 0,606 кг. Исходя из этого, можно провести соответствующие вычисления.
После этого переходим к специальным формулам, то есть, к математическому методу. В соотношениях показано, как связаны между собой данные физические величины, как найти неизвестную величину, имея 2 или больше известных параметра и пр.
А может лучше калькулятором?
Быстрее всего можно провести расчеты с применением калькулятора. Особенность такой программы состоит в том, что необходимо ввести нужные параметры, характеристики изделий, линейные размеры, иные свойства будущей конструкции. В конце онлайн калькулятор выдаст расчет нагрузки профильной трубы для заданных параметров.
Важно! Для расчета нагрузок нужно пользоваться специальными онлайн калькуляторами, которые размещены на сайтах надежных компаний.
Только в таком случае окончательные данные по обустройству системы будут правильными. Сама же конструкция при этом будет прочной и полностью безопасной.
С помощью калькулятора можно провести расчет не только вертикальной, но и поперечной нагрузки на профильную трубу. То есть, использование таких вычислительных схем позволяет определить, как может распределяться вес по всей системе.
Важно! Лучше всего воспользоваться услугами лиц, которые знакомы с ГОСТами, разбираются в строительстве, сопромате, имеющие опыт работы с аналогичными программами.
Что в первую очередь рассчитывают при помощи формул
Вычисляют многие параметры.
Чаще других ищут:
- Допустимый уровень напряжения при изгибах. Используется формула
Р= M/W,
где Р – возможное напряжение при изгибе,
М – значение изгибающего момента силы,W – механическое сопротивление.
- Требуемое сечение стояка:
F = N/R,
где F – необходимая площадь сечения (см²),
N – действующая масса (кг),R – значение сопротивления металла при деформациях, соответственно пределу текучести (кг/см²).
Значения физических величин можно отыскать в специальных таблицах.
Применение
Круглые трубы можно встретить в любом месте. Опоры, стойки, колонны, емкости – это далеко не полный перечень использования обечаек (обечайка – металлический лист цилиндрической формы без торцов).
Кольцевой трубный профиль можно встретить при прокладке водо-, нефте-, газопроводов как в быту, так ив промышленных масштабах. Они – отличный материал для столбиков ограждений, ворот, калиток.
Благодаря наличию замкнутого контура, круглая труба обладает существенным преимуществом в сравнении со швеллерами, уголками аналогичных линейных параметров.
Многие думают, что для того, чтобы определить прочность стояка, вдоль оси при нагрузке сжимающего характера, нужно иметь данные о величине нагрузки и площади сечения.
В результате деления первого параметра на второй, получил искомую прочность. После сравнения полученного параметра с допускаемым значением, взятого с таблицы, делают вывод о том, можно ли такую нагрузку давать на конкретный стояк, или нельзя.
Если число будет меньше допускаемого, то все хорошо. Но тут есть одно но: вычисления справедливые для растягивания, а не для сжатия.
Пользуемся калькулятором
Для варианта со сжатием круглой стойки, можно провести необходимые расчеты с использованием онлайн калькулятора.
Сначала необходимо ознакомиться с дополнительными понятиями. Сюда относят:
- Потерю общей устойчивости.
Проверка потери нужна для избегания огромных потерь иного типа. - Потерю местной устойчивости.
Речь идет о более раннем «заканчивании» жесткости стенок стояка при действии нагрузки на обечайку. Иначе говоря, труба начинает заламываться вовнутрь, а сечение круглого вида превращается в профиль неправильной криволинейной формы, что ведет к потере устойчивости.
Использование Excel
Существует специальная программа в Excel комплексной проверки расчета стояков относительно устойчивости и прочности. Основу данной программы составляют данные ГОСТа 14249 89. С ее помощью можно вычислить максимальную нагрузку на круглую трубу, а также усилия общего характера на обечайку круглого сечения.
В интернете можно часто встретить такие вопросы: «Какую нагрузку выдерживает круглая труба длиной 3, 4, 6 метров? Как это вычислить с помощью онлайн калькулятора? Можно ли это сделать самостоятельно?»
Какие данные нужны
Алгоритм работы с программой состоит в следующем:
- Сначала нужно открыть ГОСТ 14249 89, из которого необходимо выписать первых 5 исходных значений. Для быстрого отыскания параметров воспользоваться примечаниями к каждой ячейке.
- Заполнить ячейки D8, D9, D10, вписывая в них линейные параметры стояков.
- В ячейки от D11 до D15 внести возможные нагрузки.
Важно! Если на обечайку будет действовать внутреннее избыточное давление, то значение наружного давления равняется нулю. Аналогично: при воздействии на стояк внешнего избыточного давления, параметр внутреннего давления также будет равным нулю.
В данном случае будем рассматривать воздействие сжимающей осевой центральной силы.
Важно! Помните, что примечания к каждой ячейке в столбце «Значение» содержат в себе ссылку номеров нужной формулы, необходимой таблицы или чертежа из ГОСТа 14249 89.
Что получилось в результате
Нужно не только уметь пользоваться программой, но также уметь объяснить полученные результаты.
Необходимо сопоставить отношение действующей нагрузки к допускаемой: при получении числа, большего за единицу, труба – перегруженная. В противном случае – заданный вес стояк выдержит, при условии, что расчет нагрузки на трубу круглого сечения проведен правильно.
Важно! Пользователь должен увидеть значение суммарного влияния всех действующих сил и давлений.
Как видим, заданная схема крепления концов трубы может выдержать силу 4 тыс. 700 ньютонов, что соответствует массе примерно 470,103 кг. Нужно также учесть запас прочности, что составляет около 2%.
Обобщив вышесказанное, мимолетом напрашивается мысль: во избежание малейших просчетов, которые чреваты серьезными последствиями, не старайтесь проводить вычисления самостоятельно, если вы не специалист. В таком случае все пользователи сооружений останутся живы-здоровы, а конструкция будет приносить только радость.
Вам также может понравиться
Момент силы и правило моментов
Определение
Статика — раздел механики, изучающий условия равновесия тел.
![]() |
Если тело вывести из устойчивого равновесия, то появляется сила, возвращающая его в положение равновесия. Устойчивому равновесию соответствует минимальное значение потенциальной энергии (Ep min). |
![]() |
Если тело вывести из неустойчивого равновесия, то возникает сила, удаляющая тело от положения равновесия. Неустойчивому равновесию соответствует максимальное значение потенциальной энергии (Ep max). |
![]() |
При выведении тела из положения безразличного равновесия дополнительных сил не возникает. |
Определение
Момент силы — векторная физическая величина, модуль которой равен произведению модуля силы на плечо силы:
M = Fd
M — момент силы. Единица измерения — Ньютон на метр (Н∙м). Направление вектора момента силы всегда совпадает с направлением вектора силы. d — плечо силы. Единица измерения — метр (м).
Плечо силы — кратчайшее расстояние между осью вращения и линией действия силы.
Пример №1. Стальной шар массой 2 кг колеблется на нити длиной 1 м. Чему равен момент силы тяжести относительно оси, проходящей через точку О перпендикулярно плоскости чертежа, в состоянии, представленном на рисунке?
- Плечом силы тяжести, или кратчайшим путем от прямой, проходящей через точку О перпендикулярно плоскости чертежа, до линии действия силы тяжести, будет отрезок, равный максимальному отклонению шара от положения равновесия. Следовательно:
- M = Fd = mgd = 2∙10∙0,5 = 10 (Н∙м)
- Момент силы может быть положительным и отрицательным.
- Если сила вызывает вращение тела по часовой стрелке, то такой момент считают положительным:
- M1 = F1d1
- Если сила вызывает вращение тела против часовой стрелки, то такой момент считают отрицательным:
- M2 = F2d2
Правило моментов
- Тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:
- ∑Mi=0
- Иначе правило моментов можно сформулировать так:
- Сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки.
∑Mпо час. стр.=∑Mпр. час. стр.
Условия равновесия тел
Тело не участвует в поступательном движении: | ∑→Fi=0; →vo=0 |
Тело не участвует во вращательном движении: | ∑Mi=0; ω0=0 |
Тело находится в состоянии равновесия (не участвует ни в поступательном, ни во вращательном движении) | ∑→Fi=0; →vo=0 и ∑→Fi=0; →vo=0 |
Простые механизмы
Определение
Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.
![]() |
Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:mgsin.θ |
Нагрузка на профильную трубу: таблица расчета допустимой прочности на изгиб для прямоугольного и квадратного профиля
Здравствуйте, уважаемый читатель! Трубы с сечением квадратной или прямоугольной формы, часто используются как несущие основания во многих строительных конструкциях.
При этом важно определить, какую может выдержать они нагрузку в том или ином случае. В сегодняшней статье рассмотрим, как правильно рассчитывается нагрузка на профильную трубу таблица вычислений.
Познакомимся с разными методами расчетов, допустимыми показателями изгиба элемента.
Какая нагрузка действует на профильную трубу
На профилированную трубу действуют внешние механические силы: вес конструкций, тяжесть снега, ветровые воздействия и т. п.
При этом у каждого изделия существует максимальное значение сопротивления. Например, показатель нагрузки, которую профиль выдерживает на изгиб. При достижении максимальной величины конструкция теряет прочность и начинает деформироваться вплоть до разрыва.
Такое значение необходимо точно определять ещё на стадии проектирования монтажных работ. Оно вычисляется расчетными методами, с помощью справочных сведений, цель которых – помочь выяснить необходимые параметры профиля: сечение, толщину металла. Исходными данными при этом служат прочностные характеристики материала и типы предстоящих нагрузок.
Можно ли обойтись без расчетов
Простые бытовые конструкции (легкие оградки) изготавливают с запасом прочности, избегая расчетов. Расходы на такие сооружения будут невелики, и утруждать себя трудоемкими расчетами нет смысла.
Однако более сложные конструкции (навесы, террасы, теплицы), которые могут рухнуть, сломаться под порывом ветра, от снега, под весом элементарного оборудования, уже нуждаются в простейшем расчетном определении.
Что произойдет если не рассчитать нагрузку
Пренебрежение этим правилом приводит в лучшем случае к потере времени и денег на устранение последствий поломки сооружения. Более серьезные последствия могут возникнуть при обрушении крыши или всей металлоконструкции, в том числе при неожиданно сильном снегопаде или ветре. Вертикальные столбы могут быть повреждены случайным механическим ударом, например, паркующегося автомобиля.
Классификация нагрузок
Специалистами разработаны правила определения нагрузок и их воздействия – СП 20.13330.2011. В них содержится классификатор видов действия внешних сил на сооружения, воздвигаемые человеком.
В зависимости от времени воздействия нагрузки делят на постоянные и кратковременные. Кроме того, выделена особая категория проявления внешних сил (пожары, взрывы, землетрясения и другие ЧП).
К числу постоянных относят:
- Вес конструкций и сооружений, которые оказывают давление на основания профиля весь период.
- Вес оборудования и производимой продукции, находящихся в сооружениях.
- Тяжесть насыпей и других наслоений грунта, земляных и горных возвышенностей.
- Давление водных ресурсов.
В число кратковременных нагрузок вошли:
- Вес оборудования, применяемого в период ремонтных, профилактических работ, его замене.
- Нагрузки от транспортной и погрузочной техники, людей, занятых на временных работах.
- Воздействие природных сил (ветра, снега, дождя, перепадов температуры).
Максимальные нагрузки
Чтобы правильно подобрать трубу для использования, надо знать предельный вес, который должна выдерживать балка или опора в данном месторасположении.
Эта величина выражается в виде сосредоточенной силы, приложенной в центре пролета.
Под давлением указанной силы балка прогнется, но после окончания воздействия возвратится в прежнее состояние (на фото). Превышение наибольшего значения сломает несущую.
В бытовой практике часто встречается распределенная нагрузка, равномерно воздействующая на всю длину балки.
Отсюда напрашивается вывод о том, что пролеты не должны быть излишне большими. Установление мощной балки может перекрыть её достоинства ценой вопроса и общим утяжелением конструкции. Разумнее установить дополнительные опоры, что позволяет увеличить допустимый вес на перекрытие.
Для определения величины предельных нагрузок можно воспользоваться различными справочными данными в интернете.
Допустимые радиусы сгиба исходя из прочности материала
Радиус изгиба профиля зависит от внешнего сечения DN, толщины материала, его плотности и гибкости.
Государственные стандарты устанавливают минимальные значения радиусов изгиба для профилированных труб. Их допустимый размер во многом обусловлен способом загиба детали.
- Если загиб производят нагреванием заготовки, или путем набивания её песком, радиус загиба должен составлять не менее 3,5 DN.
- Загиб на гибочном оборудовании без нагрева возможен с минимальным радиусом 4 DN.
- Если в технологическом процессе используется печной нагрев, допускается значение в 2,5 DN.
- Важным условием гнутья является утончение стенок изделия в площади операции не более, чем на 15%.
Расчетные схемы нагрузки
- Процесс расчета любого профиля начинают с подбора расчетной схематичной модели.
- Перед началом вычислений собирают нагрузку, которая будет действовать на перекрытие.
- Затем производят чертеж эпюры с учетом схемы загрузки и опор балки.
- Далее с использованием заданных параметров, сведений из таблиц сортаментов, приводимых в ГОСТах, производят соответствующие вычисления.
- Для их простоты и оперативности можно воспользоваться онлайн калькуляторами, которые оснащены программами с готовыми формулами.
Методы расчета нагрузок
Применяют следующие способы определения допустимых нагружений:
- С помощью интернет калькулятора.
- На основании справочных таблиц.
- По формулам напряжения при прогибе профиля.
Перед вычислениями рекомендуется составить чертеж будущего каркаса, определиться с типами нагрузок.
Если деталь крепится с одного конца, рассчитывают элемент на изгиб. При креплении на опорах вычисляют прогиб.
С помощью справочных таблиц
Вариант с таблицами уже рассчитанной максимальной нагрузки наиболее простой и удобный для человека, малознакомого с сопроматом и расчетами. В них размещены уже готовые результаты вычислений для конкретных видов профильных элементов.
- Для квадратных профилей
- Для прямоугольных балок
Пользователь сразу видит предельное значение, которую выдерживает труба с определенными параметрами при заданной длине пролета. Может самостоятельно сравнить и проанализировать данные, выбрать оптимальный вариант.
К примеру, квадратный профиль 40×40 с толщиной материала 3 мм в пролете длиной 2 м выдержит 231 кг веса. Если расстояние между опорами увеличится до 6 м, допустимая нагрузка составит всего 6 кг.
Расчеты произведены с учетом веса самой трубы, величина нагрузки изображена сконцентрированной силой, примененной в точке середины пролета.
Для самостоятельных расчетов применяют данные из справочных таблиц ГОСТов. Так, параметр момента инерции квадратного профиля берется из ГОСТа 8639-82, прямоугольного сечения – из ГОСТа 8645-68.
Расчет по формуле максимального напряжения при изгибе
Для расчета профилированного элемента на изгиб используют формулу
σ = M/W.
Здесь М – величина изгибающего момента силы, а W – момент сопротивления сечения.
Из формулы видно: чем больше W, тем меньшие напряжения возникают в сечении балки.
Для получения значения М необходимо знать длину пролета и степень деформации материала. Последнее значение находят в таблицах сортаментов соответствующих ГОСТов.
Для расчета параметра W потребуются размеры балки. Полученные значения вводятся в формулу.
Как узнать правильность расчетов
Любой материал, из которого изготовляется профилированная балка, обладает значением нормального напряжения. Его силы располагаются перпендикулярно к сечению элемента. Этот показатель сравнивают с расчетным или практическим напряжением, не допуская его уменьшения.
Точности расчетов поможет создание эпюры – чертежа крепления детали на опорах, отражающего особенности профиля.
Заключение
Расчет допустимых нагрузок при строительстве ответственных объектов не должен содержать ошибок, которые могут дорого обойтись. Надеемся, что сегодняшняя статья поможет вам сделать правильные выводы и принять верные решения. Желаем успехов в строительных делах, подписывайтесь на наши статьи и делитесь полученными знаниями в соцсетях.
(11